(Minimum Homework: all odds)

#1-24 Use the Fundamental Theorem of Calculus to evaluate the definite integral.

1)
$$\int_{2}^{5} (4x - 3) dx = \int_{2}^{5} (4x - 3) dx$$

$$= \int_{2}^{5} (4x - 3) dx$$

$$= \int_{2}^{5} (4x - 3) dx$$

$$\int_{2}^{14} (f(x) - g(x)) dx = \int f(x) dx - \int g(x) dx$$

$$= \int_{2}^{7} (x - 5) dx - \int_{2}^{5} (x - 5) dx$$

$$= \int_{2}^{7} (x - 5) dx - \int_{2}^{7} (x - 5) dx$$

$$= \int_{2}^{7} (x - 5) dx - \int_{2}^{7} (x - 5) dx$$

$$= \int_{2}^{7} (x - 5) dx - \int_{2}^{7} (x - 5) dx$$

$$= \int_{2}^{7} (x - 5) dx - \int_{2}^{7} (x - 5) dx$$

$$= \int_{2}^{7} (x - 5) dx - \int_{2}^{7} (x - 5) dx$$

$$= \int_{2}^{7} (x - 5) dx - \int_{2}^{7} (x - 5) dx$$

$$= \int_{2}^{7} (x - 5) dx$$

$$=$$

3)
$$\int_{3}^{7} 5 dx$$

1st: Integral of a constant Rule: $\int a dx = ax + C$ (*a is any real number*)

$$\begin{array}{c} - & 5 \\ 3^{rd} \end{array}$$
Evaluate the integral at 7 then at 3
$$\begin{array}{c} - & 5 \\ 3 \end{array}$$

$$\begin{array}{c} - & 3 \\ 3^{rd} \end{array}$$

$$\begin{array}{c} - & 5 \\$$

Answer: 20

5)
$$\int_{0}^{3} (4x^{3} + 3x^{2} - 7) dx$$

$$= \int_{0}^{3} (4x^{3} + 3x^{2} - 7) dx$$

$$\int_{1^{3}:} \int_{1^{3}:} \int_{1^{3$$

answer: $3e^2 - 3$

4th subtract the results to get the answer

13)
$$\int_{1}^{2} 3(3x + 1)^{2} dx = \int (3 \times + 1)^{2} \cdot 3 d \times dx$$

 $|e \top \psi = 3 \times + 1|$
Rewrite the problem so that the parenthesis is first:
Next: let $u = inside$ of the parenthesis
Rewrite the problem so that the "parenthesis is changed to an " u "
 $y = 3 \times + 1$
Next find $\frac{du}{dx}$
Multiply by dx to clear the fraction.
Next replace to make problem only have u 's
Next integrate: use Power Rule: $\int x^{n} dx = \frac{1}{n+1} x^{n+1} + C$ provided $\neq -1$
Last change u back to compute the integral
 $\int (3(1) + 1)^{3} = \frac{64}{3}$
Evaluate the integral at 2 then at 1
Subtract the results to get the answer

$$\sum_{15) \int_{1}^{2} 9(3x+1)^{2} dx = \sum \left(\frac{3}{3} \times + 1 \right)^{2} \int d \times dx$$

Rewrite the problem so that the parenthesis is first:

Next: let
$$u = inside of the parenthesis is inst:
Next: let $u = inside of the parenthesis
Next: let $u = inside of the parenthesis
Next: let $u = inside of the parenthesis$$$$$

Rewrite the problem so that the "parenthesis is changed to an "u"

Next find
$$\frac{du}{dx}$$

Multiply by dx to clear the fraction.
 $3 dv = 3.3dx$

Not good enough, multiply to make a perfect match 3dv=9dX

Next replace to make problem only have u's

Next integrate: use Power Rule: $\int x^n dx = \frac{1}{n+1}x^{n+1} + C$ provided $y \neq -1$

Last change *u* back to compute the integral

Evaluate the integral at 2 then at 1

$$(3(2)+1)^3 = 343$$

subtract the results to get the answer $(3(1)+1)^3 = 64$
answer: 279

$$= \int 0^{2} \cdot 3 du$$

$$= 3 \int 0^{3} du$$

$$= 3 \cdot \frac{1}{3} u^{3}$$

$$= 1 \sqrt{3} \cdot \frac{1}{3} \sqrt{3} \frac{1}{3} \frac{$$

17)
$$\int_{-2}^{4} (2x) (x^{2} - 1)^{2} dx = \int (\chi^{2} - 1)^{2} dx$$
Rewrite the problem so that the parenthesis is first: $|e+\psi| = \chi^{2} - 1$
Next: let $u = inside$ of the parenthesis $-\int \sqrt{2} \sqrt{2} \chi d\chi$
Rewrite the problem so that the "parenthesis is changed to an "u"
 $\sqrt{2} - \chi^{2} - 1$
Next find $\frac{du}{dx}$
Multiply by dx to clear the fraction. $d\psi = 2\chi d\chi$
Next replace to make problem only have u's
Next integrate: use Power Rule: $\int x^{n} dx = \frac{1}{n+1}x^{n+1} + C$ provided $\chi^{n} \neq -1$
Last change u back to compute the integral
Evaluate the integral at 4 then at -2
 $\int (\sqrt{2} - 1)^{3} = \frac{1}{3}(15)^{3} = 1125$
Subtract the results to get the answer
 $\int ((-2)^{2} - 1) = \frac{1}{3}(3)^{2} = \sqrt{2}$

19)
$$\int_{-2}^{4} (6x) (x^{2} - 1)^{2} dx = \int_{-2}^{2} \int_{-2}^{2} (A^{2} - 1)^{2} dx = \int_{-2}^{2} \int_{-2}^{2} (A^{2} - 1)^{2} dx$$
Rewrite the problem so that the parenthesis is first: $A + U = X^{2} - 1$
Next: let $u = inside$ of the parenthesis is changed to an " u " = $\int_{-2}^{2} (A^{2} - A^{2} - A^{2$

subtract the results to get the answer

21)
$$\int_{0}^{1} 3x^{2}e^{x^{3}}dx = \int e^{x} \int e^{x} \int e^{x} \int e^{x} dx$$

Rewrite the problem so that the "e" is written first: $\int e^{2} + U = x^{3}$
Next: let $u = exponent$ of the e^{-1} $\int e^{2} \int e^{2} \int e^{2} \int e^{2} dx$
Rewrite the problem so that the exponent is changed to an "u"
Next find $\frac{du}{dx}$ $\int e^{-1} \int e^{-1} \int e^{-1} dx$ $\int e^{-1} \int e^{-1} dx$
Multiply by dx to clear the fraction. $\int e^{-1} \int e^{-1} dx = e^{x} + C$
Next integrate: "e" Rule $\int e^{x} dx = e^{x} + C$
Last change u back to calculate the integral $e^{-1} \int e^{-1} e^{-1} \int e^{-1} \int e^{-1} e^{-$

subtract the results to get the answer

answer: e - 1

23)
$$\int_{0}^{1} 6x^{2}e^{x^{3}}dx = \int e^{x^{3}} G^{3} G^{3}$$

subtract the results to get the answer

answer: 2*e* – 2