(Minimum Homework: all odds)
\#1-24 Use the Fundamental Theorem of Calculus to evaluate the definite integral.

Power Rule: $\int x^{n} d x=\frac{1}{n+1} x^{n+1}+C$ provided $\curvearrowleft_{\varnothing} \neq-1$

Integral of a constant Rule: $\int a d x=a x+C$ (a is any real number)

$4^{\text {th }}$ Evaluate the integral at 5 then at 22

$$
\begin{aligned}
& 2(5)^{\text {a }} \text { then at } 2-3(5)=50-15=35 \\
& 2(2)-3(2)=2
\end{aligned}
$$

$5^{\text {th }}$ subtract the results to get the answer

$$
\begin{array}{r}
=35-2 \\
=33
\end{array}
$$

3) $\int_{3}^{7} 5 d x$
$1^{\text {st }}$: Integral of a constant Rule: $\int a d x=a x+C$ (a is any real number)

$2^{\text {nd }} \quad$ Evaluate the integral at 7 then at 3

Answer: 20

$3^{\text {rd }}$
Power Rule: $\int x^{n} d x=\frac{1}{n+1} x^{n+1}+C$ provided $\stackrel{n}{\infty}=-1$
Integral of a constant Rule: $\int a d x=a x+C$ (a is any real number)

$4^{\text {th }}$ Evaluate the integral at 3 then at 03
$5^{\text {th }}$ subtract the results to get the answer
answer: 87

answer: $3 e^{2}-3$

answer: 3

11) $\int_{1}^{e} 7 x^{-1} d x$
$1^{\text {st }}: \int a f(x) d x=a \int f(x) d x$

$2^{\text {nd }}:$ "ln" Rule: $\left\{\begin{array}{c}\int x^{-1} d x=\ln |x|+C \\ \int \frac{1}{x} d x=\ln |x|+C\end{array}\right]=$

$4^{\text {th }}$ subtract the results to get the answer
answer: 7

Evaluate the integral at 2 then at 1
subtract the results to get the answer
answer 93
${ }_{15} \int^{P_{9}(3 x+1)^{2} d x}=\int(3 x+1)^{2} 9 d x$

Rewrite the problem so that the parenthesis is first:

Next: let $u=$ inside of the parenthesis

$$
\begin{aligned}
v & =3 x+1 \\
& =\int v^{2} q d x
\end{aligned}
$$

Rewrite the problem so that the "parenthesis is changed to an " u "

Next find $\frac{d u}{d x}$

Not good enough, multiply to make a perfect match

$$
3 d v=9 d x
$$

Next replace to make problem only have u's

Next integrate: use Power Rule: $\int x^{n} d x=\frac{1}{n+1} x^{n+1}+C$ provided $\underset{\mathscr{F}}{n} \neq-1$

Last change u back to compute the integral

Evaluate the integral at 2 then at 1

$$
2(3(2)+1)^{3}=343
$$

 answer: 279

$$
\begin{aligned}
= & 10^{3} \\
= & \left.(3 x+1)^{3}\right\}^{1} \\
\rightarrow & =343.64 \\
& =279
\end{aligned}
$$

17) $\int_{-2}^{4}(2 x)\left(x^{2}-1\right)^{2} d x$

$S\left(x^{2}-1\right)$ $\int^{2}-2 x d x$

Rewrite the problem so that the parenthesis is first: let $v=x^{2}-1$

Next: let $u=$ inside of the parenthesis

Rewrite the problem so that the "parenthesis is changed to an " u "

$$
v=x^{2}-1
$$

Next find $\frac{d u}{d x}$

Next replace to make problem only have u's

Evaluate the integral at 4 then at -2

$$
\begin{aligned}
& \frac{1}{3}\left(4^{2}-1\right)^{3}=\frac{1}{3}(15)^{3}=1125 \\
& \frac{1}{3}\left((-2)^{2}-1\right)=\frac{1}{3}(3)^{3}=9
\end{aligned}
$$

subtract the results to get the answer
answer: 1116
19) $\int_{-2}^{4}(6 x)\left(x^{2}-1\right)^{2} d x$

Rewrite the problem so that the parenthesis is first:

Next: let $u=$ inside of the parenthesis

Rewrite the problem so that the "parenthesis is changed to an " u "

Next find $\frac{d u}{d x}$

Not good enough, multiply to make a perfect match

Next replace to make problem only have u's

Next integrate: use Power Rule: $\int x^{n} d x=\frac{1}{n+1} x^{n+1}+C \quad$ provided $\underset{\sim}{h} \neq-1$

Last change u back to compute the integral

Evaluate the integral at 4 then at -2

$$
\left((-2)^{2-2}-1\right)^{3}=27 J
$$

subtract the results to get the answer
answer: 3348

subtract the results to get the answer
answer: $e-1$

Rewrite the problem so that the exponent is changed to an " u " \longrightarrow ?

Next find $\frac{d u}{d x}$

Multiply by $d x$ to clear the fraction.

Next integrate: " e " Rule $\int e^{x} d x=e^{x}+C$

Last change u back to calculate the integral
subtract the results to get the answer
answer: $2 e-2$

